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1. Summary 
 
The computational problem underlying the TASK (Taskable Agent Software Kit) domain 
is to find a solution to a large set of interacting, distributed constraints using a set of 
autonomous agents. The central hypothesis upon which our work is based is that large 
systems of distributed constraints behave much like physical systems with many 
interacting components. For example, sets of constraints can undergo phenomena such as 
sudden phase transitions from having many solutions to having no solution. Furthermore, 
analysis using the mathematical tools of statistical physics yields empirically-verifiable 
predictions that are stronger than those that can be obtained by a classical theoretical 
analysis.  
 
In this project, we (1) provided a complexity analysis for the agent RACE challenge 
problem, (2) developed a framework for fair bidding strategies in this domain, (3) 
demonstrated tradeoffs between aggressive and non-aggressive agents, (4) developed 
combinatorial auction test suites for agent system development, and (5) developed a 
series of software tools in support of large-scale agent software platforms. 
 
 
2. Approach  
 
Our approach is based on our work on:   
 
Connections between hard computational tasks and models from statistical physics[4, 6]. 
In this work we developed models based on statistical physics for hard combinatorial 
search problems. These models can be seen in terms of a distributed problem solving task 
where each individual constraint (or small group of constraints) is represented by a single 
agent. A natural mapping from the global behavior of searching for a solution to a 
physical system exists because in statistical physics global properties are determined by 
the microscopic interactions of the individual components. We extended this analysis to 
incorporate much richer agent models.  
 
Randomization techniques. Randomization is a powerful mechanism to increase overall 
predictability and robustness.  In classical combinatorial search problems,  “rapid 
restarts” [3] and “portfolio” strategies [2] have been shown to be very effective. We 
extended these techniques to complex multi-agent systems to increase their overall 
robustness.  
 
3. Problem Description (RACE Challenge Problem)   
   
The RACE problem provides a compelling framework for the study of multi-agent 
behaviors and their inherent computational complexity. In this problem domain, the 
Department of Defense (DOD) needs to formulate and execute plans for transporting 
personnel and equipment in a case of an emergency situation. (For a current example, see 
http://www.cnn.com/2003/US/02/09/sprj.irq.civil.fleet.action/index.html.) A number of 
companies have signed agreements with the DOD to provide transportation required in 
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such situations. The agreements involve a certain amount of regular contractual work that 
the DOD awards to the companies with the understanding that in case of a crisis the 
companies provide emergency services proportional to the contractual work received. 
The companies provide estimates of what it would cost the company to provide each 
emergency job. After all estimates are in, the DOD goes trough a job allocation process 
where it tries to assign jobs in a “fair” (balanced) manner to the various companies.  

 
Figure 1: Cost matrix for a sample problem. 

 
We demonstrate the relation of the structure of the cost matrix (example in Figure 1) with 
the complexity of the allocation problem in two boundaries cases. In the "Uniform 
bidding" case, all companies declare the same cost for a given job. Figure 2 shows the 
structure of the cost matrix for this case, where colors represent different costs. The 
allocation problem for a decision version of min-max fairness becomes equivalent to bin 
packing. So, this case is NP-complete, although good approximation schemes and 
average-case results are known. 

 
Figure 2: Structure of the cost matrix for the uniform bidding case. 

 
In the "Uniform cost" case, a company declares the same cost for all the jobs. Figure 3 
shows the structure of the cost matrix for this scenario. Here we have a polynomial 
algorithm for the lex min-max allocation problem. So, this case represents a tractable 
sub-case of our general allocation problem.   



 

 

 

3

 
Figure 3: Structure of the cost matrix for the uniform cost case. 

 
We have also analyzed the typical (average) complexity of the problem when the cost 
matrix has a more general form, by studying the empirical computational complexity of 
solving the allocation problem when the cost matrix of the problem is obtained from 
random problem distributions, and we determined the existence of phase transitions in the 
decision version of the problem. A particular random problem distribution is defined by 
specifying the model for obtaining a cost matrix for the problem. For example, in one of 
the models, given a set of C companies and J jobs, we obtain the cost matrix by selecting, 
uniformly at random (u.a.r.), exactly C companies for every job such that the selected 
companies will be the only ones that can perform the job. The cost for every selected 
company is generated also u.a.r from a price interval [LC,UC]. We detected a phase 
transition in the decision version of min-max fairness allocation, i.e., is there an 
allocation such that the maximum cost paid by any company is less than a given upper 
limit cost K. The Phase transition occurs when we increase the ratio of the number of 
companies to the number of jobs. Figure 4 shows the results for an experiment for 
measuring the average complexity of the problem with different values for that ratio.  The 
blue plot shows, for every different ratio companies/jobs, the average size of the search 
tree visited by a systematic search algorithm and the red plot the percentage of instances 
found to have solution with that ratio, from a total sample of 100 instances. We observe a 
phase transition from no solvable instances to solvable instances around a critical value 
of the ratio (0.56 in this experiment) and around this ratio we have also a peak in the 
computational complexity of solving the instances of the problem. 
 



 

 

 

4

 
Figure 4: Computational cost profile. 

 
We also analyzed the bidding process for companies submitting their costs for 
performing the various jobs and the connections of this problem with combinatorial 
auctions, because in a more general setting the companies will provide different costs for 
particular subsets of jobs, instead of giving costs for single jobs. We collaborated with the 
Stanford group working on the Combinatorial auction test suit CATS[5] to provide a 
understanding of the computational complexity of realistic combinatorial auction 
domains and applied this knowledge to get insight into the RACE domain. 
 
4. Robustness and Sensitivity Analysis of Distributed Agent Architecture 
 
In order to study the true dynamics of a practical agent system architecture, we analyzed 
a large series of experiments on the empirical agent server developed at the University of 
Michigan. The platform models an interactive market system in which agents compete 
for sets of goods via an auction mechanism.   
 
The platform gives us a unique opportunity to experiment with general agent design 
methodologies. The scenario is very dynamic with multiple auctions running 
continuously. (This models many real world situations, where competition is an on-going 
activity.) In such dynamic situations, a very interesting tradeoff develops in which the 
agent has to repeatedly choose between waiting somewhat longer to acquire more 
information about price movement and competitors behavior versus acting quickly and 
acquiring goods and services as soon as possible. Waiting longer, increases the agent's 
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ability to determine the true value of goods based on its competitors behavior but the 
waiting itself leads to a gradual increase in prices and may even result in certain goods 
becoming unavailable. 
 
In order to deal with the continuously changing dynamics of the agent interactions, we 
used a two-phase approach. In phase I, the agent computes what would be the optimal 
bids to make given its current information about the prices and competitors behavior (the 
"plan"). In phase II, the agent places a set of bids, based on the objectives computed in 
phase I. After phase II, the agent switches back to phase I and re-computes its objectives, 
given any new information that has become available. Phase I and II are tightly 
integrated and highly optimized. Each phase takes at most 1 to 3 seconds. We found that 
this rapid turnaround was absolutely paramount in developing an overall successful 
agent. Fast re-planning and bidding cycles appear to be the best way to deal with the 
dynamics of the interacting multi-agent domain. 
 
The following graph (Figure 5) shows the performance increase ("Avg. score") of a series 
of agent bidding strategies (from non-aggressive to aggressive) agents in a pool of 
generic ("baseline") agents. We also studied the effect of "price modeling", as used in the 
planning phase (phase I).  The price modeling approach incorporates a Bayesian scheme 
to predict price movements in the market. From the figure 5 we see that detailed price 
modeling and mildly aggressive to aggressive agent strategies lead to the best overall 
behavior. 
 
Our next graph, Figure 6, shows how the various agent strategies perform when playing 
against a mix of agents. In particular, we studied each type of agent against a series of 
environments (ranging from less aggressive agents to more aggressive ones). It is 
encouraging to see that we obtained an overall dominant strategy with the medium 
aggressive agent. That is, that agent did well across the board, against a range of agents 
of different aggressiveness. Given that one has in general only limited information about 
ones opponents, and opponents can change strategies at any point in time, it is interesting 
that one can develop strategies that are robust in such different environments. 
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Figure 5: Computational cost profile. 

 
Figure 6: Agressiveness level tradeoffs. 

Our empirical agent toolkit enables the user to study a range of agent architectures, and 
the Michigan agent server allows for a detailed empirical comparison between 
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architectures. Of particular relevance are: robustness, adaptability, and bidding and 
planning strategies. 
 
Our platform also enables groups to effectively compare their agent architectures. 
Interactions all take place through a uniform agent communication protocol and via a 
web server/client architecture, allowing for distributed and remote interactions. One very 
interesting issue that arises in this setup is that the delays in communications, although 
quite short in general, do become a key parameter of the agent architecture. In other 
words, the architectures and agent mechanisms need to have effective ways of dealing 
with unexpected delays.  Communication delays are of course a key issue in distributed 
systems in general. Agent-based interaction protocols provide a new framework of 
studying and handling such delays robustly. 
 
5. Structure in Market Mechanism Test Suite 
 
We conducted an extensive analysis of the combinatorial agents auction test suite to 
obtain a detailed picture of the structure and complexity tradeoffs. This part of our 
overall effort was based on collaboration with the Stanford group, as suggested by Dr. 
Hendler. Regular meetings (physical and by phone) took place between the groups. 
 
Combinatorial auctions (CA) are becoming an important mechanism for effective 
negotiations between autonomous distributed agents. For that reason, algorithms for 
winner determination are needed in order to manage markets of considerable size. At the 
same time, we need to understand what makes a CA instance more difficult to solve for a 
CA algorithm. At the present time, realistic CA instance distributions --- capturing 
realistic multi-agent interactions --- have been defined, but we do not have a clear way of 
generating instances with different computational properties, as is needed for the 
development of better agent interaction protocols. 
  
In the context of Constraint Satisfaction Problems (CSPs), it has been shown that the 
typical complexity of solving them is correlated with certain global properties of the 
underlying constraint graph of the problem. We have uncovered that there is also a 
correlation between the computational hardness of a CA instance and certain properties 
of the associated bid graph. The bid graph of a CA instance is a graph where the vertices 
represent dominant bids and the edges link the vertices associated with bids that share 
some good. For showing this relation between (typical) computational hardness and bid 
graph properties, we have selected a CA instance distribution taken from the 
Combinatorial Auction Test Suite (CATS, test suite developed at Stanford). This suite is 
the first, and as far as we know unique, collection of CA instance distributions defined 
from realistic market problems. For generating CA instances from the different market 
problems, every instance generator of CATS has a different list of parameters that we can 
tune in order to generate instances that reflect particular market conditions. However, as 
we will see, not all combinations of parameter values produce instances with the same 
hardness. So, if we are interested in recognizing the setting that produces the hardest 
instances with a particular CA instance distribution, we should use some method for 
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tuning the hardness. We propose the study of the correlation between hardness and bid 
graph properties, as a first step in that direction. 
 
Our main results indicate that the number of vertices and the edge density of the bid 
graph have a clear correlation with the computational hardness of a CA instance. A third 
property, the clustering coefficient, also shows some correlation, although not so strong 
as the two others.  
 
The bid graph 
 
The bid graph of a combinatorial auction instance, is defined as a graph (V,E) where: 
  
The set V is the set of dominant bids. We say that a bid A dominates a bid B if the set of 
goods in A is a subset (proper or not) of the set of goods in B and the bid price of A is 
higher than the price of B. A bid that does not dominate any bid and that is not dominated 
by any other bid is also considered as a dominant bid. The bids that are dominated by 
other bids are not considered in the bid graph. (Note that such bids would never be 
selected anyway.) 
 
The set E contains an edge between two vertices if the corresponding bids have a 
common good. So, a winning (maximizing) valid selection of dominant bids represents an 
independent set of the bid graph. 
 
There are different properties of the bid graph that intuitively can be seen to have an 
impact in the search for the optimal solution. These are the ones we have investigated: 
 
Number of vertices.  Because the vertices represent dominant bids, usually this number 
will be much smaller than the original number of bids submitted in the CA instance. This 
quantity is important because represents the real number of bids that the search algorithm 
will have to consider. 
 
Edge density. Is the ratio of the number of edges of the bid graph to the number of edges 
of a complete graph with the same number of vertices as the bid graph. 
 
Clustering coefficient. Is as measure of the cliqueness between local neighbors in the 
graph. For a vertex with k neighbors, then at most k(k-1)/2  edges can exist between them 
(this occurs if they form a  k-clique). The clustering of a node is the fraction of the 
allowable edges that occur. The clustering coefficient is the average clustering over all 
the vertices of the graph. Observe that a set of k XOR bids will form a k-clique, but other 
cliques can be formed because of the relations between bids submitted by different 
bidders. 
 
The paths problem 
 
The "Paths" problem models a particular bidding scenario that arises when bidders try to 
purchase "connections" between points of interest. For example, in a communication 
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domain we have a set of locations of interest that need to be connected via network 
owned or controlled by a single company or conglomerate. Between some of the 
locations, there exists a (geographical) connection that allows the company to install a 
fiber link between them. If a company wants to connect two remote locations, it should 
find a path of intermediate connected locations between the two desired locations. So, in 
this problem, companies bid for particular paths in a locations graph, where edges 
represent locations "directly" connected. 
 
For generating an instance of the Paths problem, the generator first creates the locations 
graph. Every location is a city. Once the locations graph is created, a set of bids is 
generated. 
 
Results for Combinatorial Auctions 
 
We can divide the set of parameters of the Paths problem in two different sets: 
 
Locations graph parameters.  Number of building paths, initial connections, building 
penalty, number of cities and number of edges (goods). 
 
Bid graph parameters. Number of total bids and shipping cost factor. 
 
In the experiments describe here, we have used the default value for the number of 
building paths provided by Paths (namely, cities^2/4). This number of building paths was 
sufficient to construct the full location graph. Although the generator has the option to 
create the locations graph through an annealing process using the building penalty, we 
use a fixed building penalty to investigate its impact on the complexity of solving the 
resulting CA instances. In all the experiments, the number of instances per data point is 
25. 
 
To modify the structure of the locations graph, we have considered changing the ratio of 
the number of cities to goods and the building penalty. 
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Figure 7. Median search cost for combinatorial auction when varying the number of cities 
for 2400 bids and different building penalties. Other parameters: goods: 12, max bid set: 

5 and shipping cost: 1.8. 
 
Figure 7 shows the results for CA instances where we have fixed all the parameters 
except for the number of cities. The graph shows the median time complexity when 
solving instances with a particular value of the building penalty (1.25 or 2.00) while 
modifying the number of cities. We observe clearly that a lower ratio of goods to cities 
produces computationally easier instances, and that given the same ratio, a smaller 
building penalty increases uniformly the hardness of the instance. (Note that the number 
of goods is fixed. So, a larger number of cities decreases the "goods per city ratio".) 
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Figure 8. Median value for bid graph properties when varying the number of cities for 
and 2400 bids and different building penalties. Other parameters: goods: 12, max bid set: 

5 and shipping cost: 1.8.  
 
We then considered the relation between the median hardness and the properties of the 
CA instances by looking at some of the structural properties of their bid graphs. Figure 8 
shows the median value of the number of vertices of the bid graph (normalized by the 
total number of submitted bids) and the edge density. We observe a correlation between 
the complexity and the number of vertices of the bid graph. For the edge density we 
observe that the easiest instances coincide with the instances with lower edge density. 
More experiments with a higher ratio of edges to cities should be performed in order to 
locate more precisely the hardest instances and their bid graph properties. 
 
Modifying the structure of the bid graph 
 
We also need to consider the effect of modifying those parameters that will change the 
bid generation process once we have generated the locations graph, i.e., those parameters 
that will have a direct effect on the resulting bid graph without modifying the locations 
graph. 
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Figure 9. Median search cost when varying the shipping cost for 2400 bids. Other 

parameters:  max bid set: 6. 
 
Figure 9 shows results for CA instances where we have fixed all the parameters except 
for the shipping cost factor. This factor has a direct effect in the bid graph, because the 
larger this parameter, the larger the bids that will be submitted by the bidders, although 
the max bid set parameter sets up an upper limit in terms of the number of possible 
different bids a bidder can submit. Therefore, even with a large increase in the shipping 
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cost factor, the max bid set parameter bounds the number of paths with different prices a 
bidder can submit as a set of XOR bids; the lowest ones always being the first submitted. 
 
The combinations of number of cities and number of goods chosen, are such that the edge 
density for the locations graph is 0.33 with 10 cities and 15 goods, and with 12 cities and 
15 good the edge density is 0.27. By looking at the results, we observe that a 
computational cost increase, when we increase the shipping cost factor. 
 
We also observe in these experiments a correlation between complexity and bid graph 
properties. Figure 4 shows the median value of the normalized number of vertices of the 
bid graph, the edge density, and the clustering coefficient. We observe a correlation 
between the complexity and the number of vertices of the bid graph, in such a way that 
the number of vertices increases until the point where we have the sharp increase in the 
complexity, but from then on decreases somewhat. For the clustering coefficient, we 
observe an inverse correlation, i.e., the greater value for the clustering coefficient is 
found for the easiest instances. This is reasonable because the more clustered the bids are, 
the more pruning can be performed by a branch and bound search method. 
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Figure 10. Median value for bid graph properties when varying the shipping cost for 2400 

bids. Other parameters: cities: 12, goods: 18, max bid set: 6, building penalty: 1.25. 
 
Based on our empirical study of the combinatorial auction agent interaction mechanisms, 
we have identified a number of parameters that capture the computational properties of 
the overall market mechanism.  
 
A key parameter is the edge density in the location graph: easier instances occur at lower 
densities. This is consistent with our intuition about under-constrained instances in 
classical search problems. Our results also show that the building penalty (penalty for 
"construction of new goods") is a factor that uniformly changes the complexity of the CA 
instance obtained.  
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6. Software Developed 
 
A series of software tools were developed as part of this effort:  
 
Agent Toolkit with plug-and-play bidding agents. The toolkit is enabled to interact over 
the internet, allowing other groups to easily interact with and use the platform.  
 
Structure and scaling analysis tools. These tools allow the user to study underlying 
structure and computational complexity scaling issues in agent platforms. 
 
Combinatorial auction bid allocation tools. Tools are based on linear programming 
methods (CPLEX) combined with combinatorial search strategies.     
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